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Abstract

Gene editing technology, from the beginning of RNA interference (RNAi) technology to effi  cient 
developed enzyme technology, has been widely used in recent years. These effi  cient enzyme technologies 
include zinc fi nger nuclease (ZFN) technology, transcriptional activation-like effector nuclease (TALENs) 
technology, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 
(Cas) 9 system (CRISPR/Cas9) technology. The CRISPR/Cas (Cas) system is a gene editing tool for DNA 
modifi cation regulated by a short RNA and is a new type of genome editing tool that is faster, more effi  cient, 
and more accurate than the zinc fi nger nuclease and transcription activator-like effector nuclease. This 
article reviews the structure and function of the CRISPR/Cas system, and is aimed to outline the Cas9 
design strategy, factors that affect the Cas9 gene editing effi  ciency, off-target detection and analysis 
methods, and especially the application in animal gene editing studies. Based on CRISPR/Cas9 gene editing 
has been successfully implemented in a variety of animals, and it is expected to become a new feasible way 
to establish animal models and study disease prevention in veterinary science and research.
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Introduction

Gene knockout technology refers to a technique that 
inactivates or deletes a specifi c gene in a body through a certain 
pathway. In the early 1980s, the success of embryonic stem 
cell isolation and in vitro culture laid the technical foundation 
for gene knockout. Then in 1985, the existence of homologous 
recombination (HR) was fi rst confi rmed, which laid the 
theoretical foundation for gene knockout in mammalian 
cells [1,2]. In order to edit genes, traditional homologous 
recombination techniques that target specifi c alleles are used. 
However, this method generally has the disadvantages of low 
effi ciency and high labor cost, which seriously restricts basic 
research and clinical application [3]. This requires scientists 
to explore more concise and effi cient gene editing techniques.

RNA interference (RNA interference, RNAi) is a widely used 
genetic method for study the gene function of mammalian cells, 
and can also be used for RNA silencing of fungi [4]. It has the 
advantages of simple operation and obvious effects. However, 
RNAi could not act on all genes and certain cell types (such 
as neurons) [5,6], but also has the disadvantages of position 
effect, temporaryity and incomplete knockout. Therefore, gene 
editing techniques such as zinc fi nger nuclease technology [7], 
transcriptional activation-like effector nuclease technology 
[8], and clusters of regularly spaced short palindromic repeat 
sequences systems have been widely developed and used in 

recent years [9], which have revolutionized the contribution 
of gene editing. Initially, the CRISPR/Cas system cannot be 
applied to humans and animals. After its transformation, it has 
been widely used as a nuclease-based gene editing technology 
in animals [10], and this study mainly reviews the research 
progress of CRISPR in veterinary science and research.

Gene structure and action mechanism of CRISPR/Cas9 
system

Gene Structure of CRISPR/Cas9 System: CRISPR/Cas9 is 
a new gene editing technology discovered in recent years. 
Currently there are three CRISPR/Cas systems (I, II, III), and 
the Cas9 nuclear protein enzymes mainly constitute and 
express Type II CRISPR/Cas systems. Each system contains 
a cluster of CRISPR-related genes, non-coding RNA, and a 
unique array of positive repetitive elements, in which the most 
common Cas9 is S. pneumoniae (sp-Cas9) system, the Type II 
CRISPR/Cas9 system. The CRISPR/Cas9 system requires at least 
3 components: a CRISPR-related nuclease, a specifi c CRISPR 
RNA (CRISPRRNAs, crRNA) and a trans-activated CRISPR RNA 
(TransactivatingcrRNA, tracrRNA) [11]. In order to streamline 
this technique, the researchers designed a single guide RNA 
(gRNA) that replaces the crRNA-tracrRNA complex, which 
could direct the Cas9 nuclease to the targeted target site to 
cleave the double-stranded DNA [12]. In addition, there is a 
structure called tracrRNA tail on tracrRNA, which is benefi cial 
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to enhance the expression of Cas9 nuclease [13]. CRISPR is a 
series of short palindrome repeats that are separated by one 
another. The sequence is 21-48 bp in length. These repeats often 
produce hairpin structures, and the number of repeats of hairpin 
structures can reach 200 times or more. Each repetitive sequence 
is separated by a short repetitive sequence that is similar in 
structure to an exogenous DNA target, called the protospacer, 
which determines the type of CRISPR system and the recognition 
site of the target gene [14]. Within the DNA target, each typical 
spacer region is always adjacent to the protospace radjacent 
motif (PAM), and PAM can be varied according to the specifi c 
CRISPR system. There are three types of commonly used PAM, 
which is NGG, NAG and NNGG, respectively [15]. The Cas9 
protein contains two nuclease domains, one is the HNH domain 
and the other is the RuvC-like domain. The HNH nuclease 
domain and the RuvC-like nuclease domain cut a single strand 
of the target DNA strand, respectively. And such single-stranded 
cleavage is prone to mutations, possibly due to the presence of 
HNH and RuvC [16].

The action mechanism of CRISPR/Cas9 System: As shown 
in fi gure 1, the PAM sequence causes recognition of the Cas9 
protein, allowing the single-stranded guide RNA linked to the 
tracrRNA to recognize the target sequence site, ensuring that the 
Cas9 protein and the genome stably binding, causing cleavage 
of the target site (usually the -3 and -4 upstream of the PAM), 
thereby producing the DNA double-strand breaks (DSB) [17]. 
DNA double-strand breaks cause non-homologous end joining or 
homologous orientation repair, and each single strand is repaired 
by a highly accurate base excision repair mechanism. The 
CRISPR/Cas9 system can perform effi cient knockout and knock-
in editing of the target gene simultaneously [18]. As shown in 
fi gure 2, after the target fragment cutted, the effect of knockout 
was achieved by the insertion or the missing mutation through 
the NHEJ repair mechanism. Knock-in transforms exogenous and 
functional genes into homologous sequences of genes and repairs 
them by homology-directed repair (HDR) to perform knock-
in or point mutations for expressing the inserted gene in cells. 
Performing Knockout and Knock-in effi ciently at specifi c sites 
simultaneously is the feature of Cas9 system [19], and it is only 
necessary to change the exogenous gene on the donor vector.

The design strategy of Cas9 system

Sequences design of target DNA: At present, it is still not 
possible to determine the exact criteria for designing target 
sequences [20], but according to some conventional criteria, select 
better target sites among many target sites is suitable. Currently 
designing targeting sequences of on-line software are http://
chopchop.rc.fas.harvard.edu/, http://rgenome.net/, http://zifi t.

partners.org/ZiFiT/Choice-Menu.aspx, http://www.e-crisp.org/
E-CRISP/de sign crispr.html, http://crispr.mit.edu/ [21]. In these 
online softwares, the main function of the fi rst two is to fi nd the 
target sequence. Afterwards, manual screening is required and the 
result is more reliable. This software, http://rgenome.net/, can be 
used to fi nd target sequences and design guide RNAs and it can 
also set the required number of base mismatches. 

Single-chain guide RNA design: The sgRNAs from 5’ to 
3’ are DNA complementary regions, crRNA and tracrRNA, 
respectively, in which the design of the DNA complementary 
region has a crucial infl uence on the target effi ciency [22]. 
The sgRNA has a 12-base unique sequence adjacent to the 
upstream of the PAM and is called the “seed region”, which 
has a greater effect on the recognition of mismatched target 
sites [23]. A certain number of mismatches between the sgRNA 
and the target fragment can be tolerated, especially if these 
mismatches are far away from PAM, so it is important to note 
the position of the mismatched sequence when designing 
sgRNA. The general criterion for designing sgRNAs for genomes 
is that a maximum of 1 mismatch is allowed at the 3’ end of the 
12 base seed region immediately adjacent to the PAM sequence 
(5’-NGG-3’) [24]. In general, the 12-base sequence close to 
PAM should be designed strictly following the principle of base 
complementation, and ensured that there were no mutations 
or mismatches in the sequence [25]. 

Factors affecting the effi ciency of Cas9 targeting: When 
designing the RNA, the GC content is generally 45% to 60%. 
Exceeding this range will affect the targeting effi ciency of Cas9 
and C base enrichment. The enrichment of C bases makes it 
easy to target DNA methylation sites, and trying to avoid 
methylation sites could help reduce epigenetic mutations [26]. 
However, it is contradictory that some studies have pointed 
out that methylation only affects ZFNs and TLAENs, and does 
not affect the cutting effi ciency of Cas9. The DNA polymerase 
I hypersensitive site (DHS) belongs to a state of chromatin 
structure, which can signifi cantly improve the cell-specifi c 
prediction of the transcription factor binding site. Designing 
the targeting sequence in DHS can improve the effi ciency of 
gene editing [27]. In addition, when selecting the target site, try 
to select the exon region instead of the intron region because 
the intron has little meaning for the translation product and is 
more susceptible to mutation than the exon.Figure 1: Mechanism of CRISPR/Cas9 system.

Figure 2: Cutting and repair mechanism of Cas9 nuclease.



017

Citation: Fan F, Mengna K, Xiaolan Z, Weiping C, Wenlina X, et al. (2018) Research progress of gene editing technology CRISPR/Cas9 system in animal gene 
editing. Int J Vet Sci Res 4(1): 015-019. DOI: http://dx.doi.org/10.17352/ijvsr.000030

Application of CRISPR/Cas9 system in animal genetic 
editing research

Gene knockout: As early as in 2013, the CRISPR/Cas9 
technology was performed for gene knockout on cell lines by 
scientists. Using target site-specifi c RNA, Cas9 nuclease was 
introduced to the target site of the genome to cleave and cause 
mutations. Then Cas9 gene targeting technique using mouse as 
an animal model has been reformed as a “one-step method” 
that enables multiple genome editing [28]. Niu Y et al., selected 
two target genes, Ppar- and Rag1, and injected Cas9 mRNA 
and single-stranded guide RNA into the fertilized eggs of 
cynomolgus monkeys. At the same time, these two genes 
were targeted in one step, and no off-target phenomenon 
was detected in the whole gene analysis and detection [29]. 
Finally, the genetically modifi ed transgenic cynomolgus 
monkey was successfully obtained. Wang H et al., reported 
mutations caused by CRISPR/Cas9 technology in the Tet 
(Ten-eleven translocation family members) gene could cause 
multiple tumors, especially hematopoietic system tumors. The 
researchers co-injected Cas9 mRNA and sgRNA into mouse 
fertilized eggs for knocking out Tet1 and Tet2 by Microinjection 
method, and the knockout effi ciency was verifi ed to be about 
80%. The experiment successfully produced a small biallelic 
mutation rats, and for the fi rst time, knock out two endogenous 
genes simultaneously in animals [30]. 

In order to promote the veterinary science and research, 
CRISPR/Cas9 technology was employed to improve animal 
strains. Zhou X et al used Cas9/sgRNAs to knock out Parkin2 and 
PINK1 genes (PTEN-induced putative kinase 1) on porcine fetal 
fi broblasts and cloned mutant cells into donors for somatic cell 
transplantation to produce homozygous transgenes pig. The 
myostatin encoded by Myostatin (myostatin) inhibits muscle 
differentiation and growth [31]. Chen F et al used the CRISPR/
Cas9 system to knock out the JH (Joining chain) region of the 
porcine immunoglobulin M (IgM) heavy chain gene, which 
plays a crucial role in the development and differentiation of 
the immune system. With the support of somatic cell nuclear 
transfer technology, the effi ciency of gene knockout was 
53.3% after transfection of pig embryo fetal fi broblasts with 
IgM antibody Cas9 plasmid, of which 25% of positive clones 
had biallelic modifi cation, which is more effi cient than the 
traditional homologous recombination [32]. The researchers 
used CRISPR/Cas9 technology to microinject the CRISPR/
Cas9 mRNA of the specifi c MSTN gene into the cytoplasm of 
ovine fertilized eggs, and the results showed that the embryo 
development mutation rate reached 50% [33]. In goats, the 
effi ciency of knocking out MSTN and FGF5 genes in fi broblasts 
was close to 60%, and only 15% and 21% of animals survived 
after knocking out MSTN and FGF5 genes in 98 experimental 
animals, respectively. After both double gene modifi cation, 
and the result showed 10% of animals survived. These studies 
suggest that the CRISPR/Cas9 system can be used as an 
effective gene editing tool for breeding new varieties of animal 
traits and breeding for disease resistance [34]. By injecting 
the Cas9 mRNA and sgRNA of the IL2RG and Rag1 genes into 
the cytoplasm of prokaryotic embryos, bi-allelic knockout 
rabbits can be obtained and the effi ciency up to 100%, while 

knocking out 3 genes (IL2RG, RAG1, and RAG2) and 5 genes 
(IL2RG, RAG1, RAG2, TIKI1 and ALB), the effi ciency could reach 
33.3% [35]. N. Véron et al used live point punching technology 
to effectively knock out the transcription factor PAX7 (Paired 
box7) in chicken embryonic stem cells, resulting in mosaic 
gene mutations in wild-type multicellular animals, and loss 
of related functions of chicken embryonic stem genes [36]. 
Moreover, the Cas9 technology also enables effi cient multigene 
modifi cation on zebrafi sh, and the crRNA-tracrRNA-Cas9 
protein complex visualizes endogenous gene expression, this 
is the fi rst breakthrough in the cold water animal model [37].

Gene knock-in: Studies have found that if homologous 
DNA is provided, exogenous sequences could be knocked into 
specifi c target sequence of zebrafi sh embryos with an insertion 
effi ciency of 3.5% to 15.6%. The potential off-target sites is 
only 1.1% to 2.5%, refl ecting the specifi city of the Cas9 system 
[38]. To date, few articles have reported about the use of the 
Cas9 system to edit bovine genomes, probably because of the 
longer gestation cycle and the off-target nature of Cas9 [39]. 
In 2016, the researchers used the NHEJ pathway to effi ciently 
integrate a 4.6 kb promoter-less vector into the GADPH gene 
locus, with knock-in rates of 20% and 1.7% on human cells 
and embryonic stem cells, respectively, and the NHEJ approach 
is demonstrated more effi cient than the HDR approach [40], 
however, the cytotoxicity problems that may be caused by the 
NHEJ pathway have not been evaluated.

Conclusion

The Cas9 system is a unique mechanism for microbial self-
protection, which is designed to prevent the invasion of foreign 
microorganisms. It is a faster and more effi cient gene editing 
tool after ZFN and TALEN. This technology aims to improve 
the recognition and binding ability of specifi c sequences and 
the effi ciency of enzyme digestion. More and more studies 
have improved the gene edit possibility in different species 
by using Cas9 system. Since the PAM (5’-NGG-3’) of Cas9 
nuclease is very short and can be found in almost any species, 
this solves the problem of cross-species in gene editing tools. 
Effi cient, low time cost, multi-site gene editing on a genome, 
and basically no species restrictions are the advantages of Cas9 
gene editing technology. Cas9 gene editing technology also 
has some shortcomings, such as easy off-target and potential 
target sites, gene mutations and too many factors affecting 
target effi ciency. Gene mutations generated during gene 
editing are side effects of the CRISPR/Cas9 system targeting 
system, and CRISPR/Cas9 nucleases may bind to unexpected 
sites, leading to genetic mutations at certain sites, which are 
aspects of the Cas9 system that need improvement.

Researchers are also working to continuously explore and 
optimize the research of the CRISPR system to make it faster, 
easier, and better. Slaymaker IM et al found a protein smaller 
than Cas9 nuclease in S. aureus, which is more powerful in 
easier access to mature cells and easier to binding ability to 
the vector, and then the new eSpCas9 gene editing system was 
transformed, which not only reduced the off-target effi ciency, 
but also continued effi cient and high-accuracy target effi ciency 
[41]. It is believed that with the continuous optimization and 
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improvement of CRISPR/Cas9 gene editing technology, it plays 
an important role in animal new breed cultivation, disease 
resistance breeding and disease research and development in 
biomedical fi elds. 
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